首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   14篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   13篇
  2012年   12篇
  2011年   12篇
  2010年   7篇
  2009年   8篇
  2008年   13篇
  2007年   13篇
  2006年   15篇
  2005年   9篇
  2004年   19篇
  2003年   13篇
  2002年   12篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有206条查询结果,搜索用时 31 毫秒
71.
The low-affinity nerve growth factor receptor p75 is a stratified epithelial stem/progenitor marker of human epithelia. We found OM-1, a human squamous cell carcinoma (SCC) cell line, showed distinct cells with p75 cluster, especially located at the center of a growing colony in a monolayer culture. A cell with p75 cluster was surrounded by cytokeratin 14- and cytokeratin 13-expressing cells that settled at the outer margin of the colony. OM-1 cells were also capable of forming tumor spheres in a cell suspension culture, an ability which was attenuated by the inhibition of p75-signaling. Intriguingly, we also found a p75-negative cell population from a growing culture of OM-1 that re-committed to become p75-clustering cells. These results indicated the possibility that SCC with epithelial multi-layering capacity can exploit the p75-dependent stratified epithelial progenitor property for the cancer stemness.  相似文献   
72.
Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50-100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry.  相似文献   
73.
Terf/TRIM17 is a tripartite motif protein that has been originally isolated from testis. Terf has been characterized to exhibit an E3 ubiquitin ligase activity and to undergo self-ubiquitination. The cellular function of terf and its substrates, however, remain elusive. In the present study, we performed a yeast two-hybrid screening assay using terf as bait and identified a positive clone coding for ZW10 interacting protein (ZWINT), a known component of the kinetochore complex required for the mitotic spindle checkpoint. Immunoprecipitation and western blot analyses showed that terf interacted with ZWINT and that overexpression of terf caused down-regulation of protein levels of ZWINT in mammalian cells. In addition, the coiled-coil domain of terf was required for the interaction with ZWINT. In a cell growth assay, stable transfection with terf decreased proliferation of MCF7 breast cancer cells. In contrast, the growth rate of MCF7 cells was increased by stable expression of ZWINT. Specific siRNAs targeting terf and ZWINT dampened these negative and positive effects of terf and ZWINT on cell proliferation, respectively. These results suggest that the E3 ubiquitin ligase terf causes protein degradation of ZWINT and negatively regulates cell proliferation.  相似文献   
74.
S-Methylmethionine (MMS, an anti-ulcer factor, Vitamin u) was determined in the extracts of various kinds of teas, such as green teas, black teas and oolong teas, using an amino acid analyzer for physiological-fluid analysis or for rapid analysis. MMS in the column eluates was confirmed to be dimethyl sulfide by a gas-chromatographic method with a flame photometric detector. The quantity of MMS obtained from the various green teas depended on the quality and the freshness, i.e.fresh, high-quality gyokuro, 15.7 to 24.5 mg%; fresh sen-cha, 7.0 to 10.3 mg%; and the other green teas 1 to 6mg%. Oolong tea and black tea did not contain MMS.

The extraction conditions for and the heat-stability of MMS were also discussed.  相似文献   
75.
In comparing the aroma concentrates from various types of black tea by the use of gas chromatography (GLC), differences of aroma pattern were recognized among these black tea of Ceylon, India, Peru, Formosa and Japan.

One of the typical differences, by which the variety would be characterized, appeared in the proportion of linalool (include its oxides) to geraniol and phenylethanol. Furthermore the ratio of the total area of peaks before and after linalool seemed to have some relation with the variety of black tea.

Also, top note of black tea aroma was compared by head space vapor analyses.  相似文献   
76.
77.
Understanding astrocytogenesis is valuable for the treatment of nervous system disorders, as astrocytes provide structural, metabolic and defense support to neurons, and regulate neurons actively. However, there is limited information about the molecular events associated with the differentiation from primate ES cells to astrocytes. We therefore investigated the differentially expressed proteins in early astrocytogenesis, from cynomolgus monkey ES cells (CMK6 cell line) into astrocyte progenitor (AstP) cells via the formation of primitive neural stem spheres (Day 4), mature neural stem spheres (NSS), and neural stem (NS) cells in vitro, using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS-MS). We identified 66 differentially expressed proteins involved in these five differentiation stages. Together with the results of Western blotting, RT-PCR, and a search of metabolic pathways related to the identified proteins, these results indicated that collapsin response mediator protein 2 (CRMP2), its phosphorylated forms, and cellular retinoic acid binding protein 1 (CRABP1) were upregulated from ES cells to Day 4 and NSS cells, to which differentiation stages apoptosis-associated proteins such as caspases were possibly related; Phosphorylated CRMP2s were further upregulated but CRABP1 was downregulated from NSS cells to NS cells, during which differentiation stage considerable axon guidance proteins for development of growth cones, axon attraction, and repulsion were possibly readied; Nonphosphorylated CRMP2 was downregulated but CRABP1 was re-upregulated from NS cells to AstP cells, in which differentiation stage reorganization of actin cytoskeleton linked to focal adhesion was possibly accompanied. These results provide insight into the molecular basis of early astrocytogenesis in monkey.  相似文献   
78.
79.
80.
AimsWe previously reported that cysteinyl leukotriene receptor 2 (CysLT2) mediates ischemic astrocyte injury, and leukotriene D4-activated CysLT2 receptor up-regulates the water channel aquaporin 4 (AQP4). Here we investigated the mechanism underlying CysLT2 receptor-mediated ischemic astrocyte injury induced by 4-h oxygen-glucose deprivation and 24-h recovery (OGD/R).Main methodsPrimary cultures of rat astrocytes were treated by OGD/R to construct the cell injury model. AQP4 expression was inhibited by small interfering RNA (siRNA). The expressions of AQP4 and CysLTs receptors, and the MAPK signaling pathway were determined.Key findingsOGD/R induced astrocyte injury, and increased expression of the CysLT2 (but not CysLT1) receptor and AQP4. OGD/R-induced cell injury and AQP4 up-regulation were inhibited by a CysLT2 receptor antagonist (Bay cysLT2) and a non-selective CysLT receptor antagonist (Bay u9773), but not by a CysLT1 receptor antagonist (montelukast). Knockdown of AQP4 by siRNA attenuated OGD/R injury. Furthermore, OGD/R increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the cell injury and AQP4 up-regulation.SignificanceThe CysLT2 receptor mediates AQP4 up-regulation in astrocytes, and up-regulated AQP4 leads to OGD/R-induced injury, which results from activation of the ERK1/2 and p38 MAPK pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号